Lecture 03
Chair of Methods for Model-Based Development in Computational Engineering
2024-04-17
Join the poll
or join 23 80 21 6 www.mentimeter.com
Consider a specific quantity \(\Psi\) in an arbitrary volume \(\mathcal C\). \(\Psi\) : mass per unit volume, or energy per unit volume
\(\Psi\) can increase (decrease) according to influx (outflux) \(\mathbf F\)
\(\Psi\) can increase (decrease) according to production (decay) \(\mathbf S\)
there is no other mechanism
\[ \begin{aligned} \underbrace{\frac{d}{dt} \int_{\mathcal C} \Psi d \mathbf x}_{ \text{ rate of change of $\Psi$ in $\mathcal C$}} &= \underbrace{- \int_{\partial \mathcal C} \mathbf F \cdot \mathbf n d \mathbf \sigma}_{ \text{ in-/outflow across the surface (1.)}} + \underbrace{ \int_{\mathcal C} \mathbf S d \mathbf x}_{ \text{ production/decay in (2.)}} \end{aligned} \]
\[ \begin{align} \int_{\mathcal C} \nabla \cdot \mathbf F d \mathbf x = \int_{\partial \mathcal C } \mathbf F \cdot \mathbf n d \mathbf \sigma \end{align} \]
\[ \begin{align} \frac{d}{dt} \int_{\mathcal C(t)} \mathbf \Psi d \mathbf x = \int_{\mathcal C(t)} \frac{\partial \mathbf \Psi}{\partial t} d \mathbf x + \int_{\partial \mathcal C(t) } \Psi \left( \mathbf v_c \cdot \mathbf n \right) \mathbf d \mathbf \sigma \end{align} \]
We use the following:
From the point of view of a constant control volume: \(\mathbf v_c = \mathbf 0\). An advective transport term appears as part of \(\mathbf F\).
Alternative viewpoint:
From the point of view of a material point moving through the fluid with constant mass, \(\mathbf v_c = \frac{dX_i}{dt} = \mathbf v\). No additional advective transport term appears in \(\mathbf F\). The transport naturally appears from the movement of the control volume.
\[ \begin{aligned} \underbrace{\frac{d}{dt} \int_{\mathcal C} \Psi d \mathbf x}_{ \text{RTT}} &= \underbrace{- \int_{\partial \mathcal C} \mathbf F \cdot \mathbf n d \mathbf \sigma}_{ \text{DT}} + \int_{\mathcal C} \mathbf S d \mathbf x \end{aligned} \]
\[ \begin{aligned} \int_{\mathcal C} \frac{\partial}{\partial t} \Psi d \mathbf x & = - \int_{\mathcal C} \nabla \cdot \mathbf F d \mathbf x + \int_{\mathcal C} \mathbf S d \mathbf x \end{aligned} \]
\[ \begin{aligned} \partial_t \Psi & = - \nabla \cdot \mathbf F + \mathbf S \end{aligned} \]
The two basic types of transport are: \(\mathbf F = \Psi \mathbf v + \mathbf J\)
Advective transport at velocity \(\mathbf v\), hence \(\Psi \mathbf v\), and
Diffusive transport with a diffusive flux \(\mathbf J\),
gradient-driven transport \(\mathbf J = - D \nabla \Psi\), in which \(D\) stands for the diffusion coefficient.
Fourier’s law (heat conduction)
Fick’s law (mass diffusion)
\[ \begin{aligned} \partial_t \Psi + \nabla \cdot \left( \Psi \mathbf v \right) & = - \nabla \cdot \mathbf J + S \end{aligned} \]
The specific quantity \(\Psi\) being scalar implies \(\nabla \Psi\) to be a vector.
The diffusion coefficient can be a scalar \(D\) or a second order tensor \(\mathbf D\) (anisotropic diffusion)
Both \(D \nabla \Psi\) and \(\mathbf D \nabla \Psi\) will be a vector.
\(\nabla \cdot D \nabla \Psi\) and \(\nabla \cdot \mathbf D \nabla \Psi\) will be a scalar
It has the same dimension as \(\Psi\).
\[ \begin{aligned} \partial_t \Psi &+ \partial_x \left( \Psi v_x \right) + \partial_y \left( \Psi v_y \right) + \partial_z \left( \Psi v_z \right) \\[1em] & = \partial_x \left( D \partial_x \Psi \right) + \partial_y \left( D \partial_y \Psi \right) + \partial_z \left( D \partial_z \Psi \right) + S \end{aligned} \]
\[ \begin{aligned} \partial_t \Psi + \partial_x \left( \Psi v_x \right) + \partial_y \left( \Psi v_y \right) + \partial_z \left( \Psi v_z \right) = \partial_x & \left( d_{xx} \partial_x \Psi + d_{xy} \partial_y \Psi + d_{xz} \partial_z \Psi \right) \\ + \partial_y & \left( d_{yx} \partial_x \Psi + d_{yy} \partial_y \Psi + d_{yz} \partial_z \Psi \right) \\ + \partial_z & \left( d_{zx} \partial_x \Psi + d_{zy} \partial_y \Psi + d_{zz} \partial_z \Psi \right) + S \end{aligned} \]
\[ \begin{aligned} \partial_t \Psi + \partial_i \Psi v_i & = \partial_i d_{ij} \partial_j \Psi + S \end{aligned} \]
Whenever diffusion differs with the orientation
flow in a layered porous medium
Set \(\Psi = \rho\) being mass per unit volume. \[ \mathbf J = 0 \quad \text{and} \quad \mathbf S = 0. \]
This yields the well known mass balance:
\[ \partial_t \rho + \nabla \cdot \left( \rho \mathbf v \right) = 0 \]
Set \(\Psi = \rho \mathbf v\), hence being momentum per unit volume. \[ \mathbf J = \mathbf \sigma \quad \text{and} \quad \mathbf S = \rho \mathbf b, \]
in which \(\mathbf b\) is a body force and \(\mathbf \sigma\) is the Cauchy stress tensor.
All in all, this yields the well known momentum balance:
\[ \partial_t ( \rho \mathbf v ) + \nabla \cdot \left(\rho \mathbf v \otimes \mathbf v \right) = \nabla \cdot \mathbf \sigma + \rho \mathbf b \]
The terms corresponds from left to right:
\(\partial_t ( \rho \mathbf v )\) : local change of momentum per unit volume
\(\nabla \cdot \left( \rho \mathbf v \otimes \mathbf v \right)\) : influx/outflux of momentum into control volume due to advective transport
\(\nabla \cdot \mathbf \sigma\) : force action of the ambient continuous medium through its boundary (examples: stretched rod, fluid at rest)
\(\rho \mathbf b\) : total mass force acting on the medium, e.g. gravitational force
Use the mass balance to write
\[ \partial_t \mathbf v + \left( \mathbf v \cdot \nabla \right) \mathbf v = \tfrac{1}{\rho} \nabla \cdot \mathbf \sigma + \mathbf b \]
Identifying the total derivative yields
\[ \frac{D}{Dt} \mathbf v = \tfrac{1}{\rho} \nabla \cdot \mathbf \sigma + \mathbf b, \]
which mimicks Newton’s second law.
17.04.2024 - steldermann@mbd.rwth-aachen.de